skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akujuobi, Cajetan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wyld, David C; Nagamalai, Dhinaharan (Ed.)
    The proliferation of 5G technologies and the vast deployment of Internet of Things (IoT) devices have heightened the demand for optimal spectrum utilization, necessitating robust spectrum management strategies. In this context, an efficient energy detector employing wideband spectrum sensing within a 5G environment is essential for identifying underutilized frequency bands suitable for cognitive radio applications across multiple subbands. While cooperative spectrum sensing (CSS) can enhance the detection capabilities of energy detectors amidst noise uncertainty, its performance often deteriorates under low signal-to-noise ratio (SNR) conditions. This study proposes an improved CSS framework that combines Maximal Ratio Combining (MRC) with the K-out-of-N fusion rule to address noise uncertainty in a complex Gaussian environment across multiple sub-bands in cooperative wideband spectrum sensing. Comparative performance analysis confirms that this integrated approach enhances detection probability and maintains a low false alarm rate across various low SNR scenarios, significantly outperforming traditional cooperative and non-cooperative wideband spectrum sensing methods. These results highlight the potential for advancing cognitive radio technologies by optimizing detection algorithms to improve performance under challenging conditions. 
    more » « less
    Free, publicly-accessible full text available July 19, 2026
  2. Internet of Things (IoT) ecosystems are becoming increasingly ubiquitous and heterogeneous, adding extra layers of complexity to secure communication and resource allocation. IoT computing resources are often located at the network edge and distributed across many heterogeneous sensors, actuators, and controller devices. This makes it challenging to provide the proper security mechanisms to IoT ecosystems in terms of manageability and maintainability. In an IoT ecosystem, computational resources are naturally distributed and shareable among their constituency, which creates an opportunity to distribute heavy tasks to them. However, resource allocation in IoT requires secure and complex communication and coordination mechanisms, which existing ones do not adequately support. In this paper, we present Secure Actor-based Model for IoT Communication (SecIoTComm), a model for representing secure IoT communication. SecIoTComm aims to represent secure IoT communication properties and design and implement novel mechanisms to improve their programmability and performance. SecIoTComm separates the communication and computation concerns, achieving design modularity in building IoT ecosystems. First, this paper presents the syntax and operational semantics of SecIoTComm. Then, we present an IoT framework implementing the key concepts of the model. Finally, we evaluate the developed framework using various performance and scalability metrics. 
    more » « less